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VOLATILITY FORECASTING: THE SUPPORT VECTOR 

REGRESSION CAN BEAT THE RANDOM WALK  
 

  

Abstract. Financial time series prediction is important, and it is a 

challenger task in empirical finance due to its chaotic, nonlinear and complex 

nature. Machine learning techniques that have been employed to forecast 

financial volatility. In this paper, we implement a standard Support Vector 

Regression model with Gaussian and Morlet wavelet kernels on daily returns of 

two stock market indexes - USA(SP&500) and Brazil (IBOVESPA) - over the 

period 2008-2016. The random walk, GARCH(1,1) and GJR(1,1) on the skewed 

Student’s t-distribution serve as comparison models by using Mean Squared 

Error (MSE) and the Diebold-Mariano test. The empirical analysis suggests that 

the SVR can beat the random walk model in the USA (S&P500) and Brazilian 

(Ibovespa) markets at one-period ahead forecasting horizon. 

 Keywords: Financial time series Volatility Forecasting Support Vector 

Regression  Random Walk.  
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1. Introduction 
 
The volatility of financial returns is a fundamental metric in finance [5]. The 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) is one of the 

most used volatility forecasting models. However, previous studies showed that 

non-linear Machine Learning (ML) methods have better forecasting performance than 

traditional statistical and econometric methods [8,3,9,19]. The Support Vector 

Regression (SVR) is a ML method that implement the Structural Risk Minimization, is a 
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kernel-based methodology and has excellent volatility predictive accuracy compared 

with the GARCH family and neural networks [15, 25, 28, 10, 20, 4]. 

Empirical results show that the accuracy of the random walk model (RW) can 

outperform traditional linear statistical and econometric models in financial time series 

prediction [13, 1]. Moreover, according to [13], in relation to more sophisticated 

econometric models, simplest models may present better accuracy in predicting 

volatility. However, the RW has a linear form and do not capture the nonlinear, complex 

and noise behaviour of these series. The SVR is very useful in modelling the conditional 

volatility of stock returns because is a distribution-free approach, a pure-data driven 

method, allows a flexible structure and can approximate nonlinear characteristics of 

financial time series [9, 26]. Previous researches showed that the SVR can beat the 

random walk model for prediction of financial prices [21 ,26]. Nevertheless, to the best 

of our knowledge, this is the first paper to compare the performance of SVR with the 

RW in the context of volatility forecasting. We develop a SVR algorithm which 

attempts to improve the one-day ahead volatility forecasts of stock index and also try to 

beat the RW. The remainder of this paper is organized as follows. The next section 

describes the Support Vector Machine (SVM) for regression. Section 3 describes the 

empirical modelling. Section 4 shows the empirical results of the proposed model on 

daily financial returns of SP&500 and Ibovespa indexes. Section 5 provides the 

concluding remarks of this paper. 

 

2. Support Vector Regression  

 
Given a set of training data (𝑥1, 𝑦1), ⋯ , (𝑥𝑛, 𝑦𝑛), where 𝑥𝑖 ∈ 𝒳 ⊆ ℝ𝑝 is the 

input vector and 𝑦𝑖 ∈ 𝑌 ⊆ ℝ being the output scalar, the goal of SVR is to find a 

function 𝑓(𝑥) that approximate the output 𝑦𝑖 [27]:  

 𝑓(𝑥) = 𝑤𝛵𝜙(𝑥) + 𝑏,     𝑤𝑖𝑡ℎ     𝜙: ℝ𝑝 → ℱ, 𝑤 ∈
ℱ                             (1) 

where 𝑤 = [𝑤1, ⋯ , 𝑤𝑛]𝛵 are the regression coefficients , 𝑏 is a constant and 𝜙(. ) is 

the nonlinear mapping function, which projects the input vector into a higher dimension 

feature space (ℱ), where the linear regression is defined. 

Vapnik[27] introduced the 𝜀 -insensitive loss function |𝑦𝑖 − 𝑓(𝑥)| =
max{0, |𝑦𝑖 − 𝑓(𝑥)| − 𝜀} to measure the forecasts errors made by SVR. To denote the 

errors outside the 𝜀 -insensitive zone, slack variables ( 𝜉𝑖, 𝜉𝑖
∗ ), 𝑖 = 1,2, ⋯ , 𝑛  are 

introduced in the SVR primal problem of SVR:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
1

2
∥ 𝑤 ∥2+ 𝐶 ∑𝑛

𝑖=1 (𝜉𝑖 + 𝜉𝑖
∗)                                    (2) 
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 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (

𝑦𝑖 − 𝑤𝛵𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖 ,

𝑤𝛵𝜙(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗,

𝜉𝑖, 𝜉𝑖
∗ ≥ 0   𝑓𝑜𝑟𝑖 = 1, … , 𝑛

 

 

where 𝐶 is the regularization hyperparameter. 

The parameters 𝐶 and 𝜀 are the SVR parameters and can be determined by a 

grid search algorithm with validation (or cross-validation) [18]. We substitute the dot 

product by a kernel function to overcome the complexity of computing 𝜙(⋅), this is 

known as the kernel trick approach: 𝑓(𝑥) = ∑𝑛
𝑖=1 (𝛼𝑖 − 𝛼𝑖

∗)𝐾(𝑥𝑖, 𝑥) +
𝑏,     𝑤ℎ𝑒𝑟𝑒     0 ≤ 𝛼𝑖, 𝛼𝑖

∗ ≤ 𝐶                  (3) 

 

The kernel function 𝐾(𝑥, 𝑥′) = 〈𝜙(𝑥), 𝜙(𝑥′)〉  is critical to the forecasting 

performance of the SVR, but until now there is no way to choose an appropriate kernel. 

For a mathematical function to be admissible as a kernel, it must satisfy the [23] 

theorem. In this work, the parameters of the Gaussian and Morlet wavelet kernels were 

determined using a grid-search and hold-out method in the training set [8]. 

 

2.0.1  Wavelet Kernels 
Wavelet analysis is used in a variety of domains, such as: geophysics, 

engineering, physics, statistics, finance [11]. Wavelets functions can approximate a 

signal and model the frequency and temporal domain of time series by translations and 

dilations of a mother wavelet Ψ(𝑥) ∈ 𝐿2(ℝ𝑝):  

Ψ𝑘,𝑎(𝑥) =
1

√𝑎
Ψ (

𝑥−𝑘

𝑎
) ,    𝑥 ∈ ℝ𝑝  𝑎𝑛𝑑 𝑎, 𝑘 ∈

ℝ.                                                (4) 

where 𝑎 is the dilation factor and 𝑘 is the translation factor. With the use of wavelet 

analysis, , Zhang et al. [29] developed admissible wavelet kernels. They proved the 

existence of two types of wavelets kernels. First, the dot productive kernel:  

                 𝑘(𝑥, 𝑥′) = ∏𝑝
𝑖=1 Ψ(

𝑥𝑖−𝑘𝑖

𝑎
)Ψ(

𝑥′𝑖−𝑘′𝑖

𝑎
)                           (5) 

where 𝑎, 𝑥, 𝑥′ ∈ ℝ. Second, the translation invariant kernel:  

                    𝑘(𝑥, 𝑥′) = ∏𝑝
𝑖=1 Ψ(

𝑥𝑖−𝑥𝑖
′

𝑎
)                                   (6) 

 

Using the Morlet wavelet function Ψ(𝑥) = 𝑐𝑜𝑠(1.75𝑥)exp(𝑥2/2), Zhang et 

al. [29] constructed a translation invariant kernel that satisfies Mercer’s condition:                  

                  𝑘(𝑥, 𝑥′) = ∏𝑝
𝑖=1 (𝑐𝑜𝑠(1.75 ×

(𝑥𝑖−𝑥𝑖′)

𝑎
)exp(

−(𝑥𝑖−𝑥𝑖′)2

2𝑎2 ))

                   (7) 
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In the context of volatility forecasting, Li [20] showed that the Morlet wavelet 

kernel combined with the SVM in estimating the APARCH model has superior 

predicting ability results than the Gaussian kernel via Monte Carlo simulations. In this 

paper, we also use the traditional Gaussian kernel with the following form: 𝑘(𝑥, 𝑥′) =
exp(−𝛾 ∥   𝑥 − 𝑥′ ∥2), where 𝛾 is the precision parameter of the kernel function [26]. 

 

3. Empirical Modelling 

 
According to [1], the random walk model (RW) is one of the best linear model 

for financial time series forecasting. As in Dimson and Marsh [13], we use the RW 

model as a benchmark for judging the other volatility forecasting models. The driftless 

RW is given by the following equation [13]:  

                   ℎ𝑡 = ℎ𝑡−1                                           (8) 

 

where ℎ𝑡 is the volatility proxy. Although the use of a proxy for daily volatility implies 

an imperfect estimator of the real conditional variance [24 ,2], we use the same proxy as 

[6, 10]:  

                                    ℎ̃𝑡 = (𝑟𝑡 − �̅�)2                           (9) 

where 𝑟𝑡 is the daily log-return and �̅� it is the mean of log-returns series, for  

𝑡 = 1, … , 𝑇. 

We also apply the GARCH and GJR models on the skewed Student’s 

t-distribution to model the volatility of financial returns because is a traditional choice in 

the context of volatility forecasting [17 ,22]. 

 

3.1  Parametric Volatility Models 

We use the log-returns series: 𝑟𝑡 = 𝑙𝑜𝑔 (
𝑃𝑡

𝑃𝑡−1
), where 𝑃𝑡  is the price. The 

GARCH (1,1) has the following structure [17, 22]:  

                     𝑟𝑡 = 𝑢𝑡 + 𝑎𝑡                                  (10)               

                                           𝑎𝑡 =

√ℎ𝑡𝑧𝑡,    𝑧𝑡~𝑖. 𝑖. 𝑑(0,1)                          (11)                    

                                             ℎ𝑡 = 𝛼0 +
𝛼1𝑎𝑡−1

2 + 𝛽1ℎ𝑡−1                          (12) 

 

where 𝛼0 > 0 and 𝛼1, 𝛽1 ≥ 0.  
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In order to improve GARCH and capture negative and positive shocks, Glostenet al.[16] 

introduced the GJR model:  

 ℎ𝑡 = 𝛼0 + 𝛼1𝑎𝑡−1
2 + 𝛽1ℎ𝑡−1 + 𝛾𝑆𝑡−1

− 𝑎𝑡−1
2 , (13) 

 

where 

                                                     𝑆𝑡−1
− =

(
1, 𝑖𝑓𝑎𝑡−1 < 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                        (14) 

 

where 𝛼0 > 0 and 𝛼1, 𝛽1 ≥ 0, 𝛼1 + 𝛾 ≥ 0. 

In order to model excess of kurtosis and asymmetric effects, we use the skewed 

Student’s t-distribution [14]: 

𝑓(𝑥|𝜄, 𝜈) =
2

𝜄+1/𝜄
[𝑔(𝜄(𝑠𝑥 + 𝑚)|𝜈)𝐼(−∞,0)(𝑥 + 𝑚/𝑠)] +

2

𝜄+1/𝜄
[𝑔((𝑠𝑥 +

𝑚)/𝜄|𝜈)𝐼(0,+∞)(𝑥 + 𝑚/𝑠)],                                                 (15) 

where 𝑔(./𝜈) is a Student’s t-distribution with 𝜈 degrees of freedom, 

                    𝑚 =
Γ((𝜈+1)/2)√𝜈−2

√𝜋Γ(𝜈/2)
(𝜄 − 1/𝜄),                        (16)                                

                                                𝑠 =

√(𝜄2 + 1/𝜄2 − 1) − 𝑚2                        (17) 

where 𝜄 is the asymmetric parameter. 

 

3.2  SVR Algorithm for volatility forecasting 

 
The SVR used in this work is given by the following structure: 

                     ℎ̃𝑡 = 𝑓(ℎ̃𝑡−1)                                (18) 

where 𝑓 is the decision function estimated by SVR and ℎ̃𝑡 is the daily volatility proxy. 

The algorithm steps of SVR for volatility forecasting are as follows: 

 

    • Step 1 Divide the database into three mutually exclusive sets: training, 

validation and testing. The first 50 % composes the training set, the next 20 % composes 

the validation set and the last, 30%, are used for testing. 

    • Step 2 In the training test, determine the SVR and kernel optimal 

parameters by the holdout method based on grid-search and sensitivity analysis [8, 7]; 

    • Step 3 Choose the parameters that has the smallest value of Mean Squared 

Error (MSE) in the validation set: 
1

𝑛
∑𝑛

𝑡=1 𝜀𝑡
2;  
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    • Step 4 After the choice of optimal parameters of SVR, make the 

one-period-ahead volatility forecasts in the test set (i.e. out-of-sample);  

    • Step 5 Evaluate the prediction performance with the Mean Squared Error 

(MSE) and the Diebold-Mariano test [12]. 

We use the MSE because is a consistency loss function in the context of 

volatility forecasting [24, 2]. 

 

4  Results 

 
The literature suggests that developed equity markets are more efficient and 

difficult to predict than emerging markets [19]. Given that, we apply the proposed 

algorithm in two series of index. These are as follows: (i) USA (daily closing prices of 

S&P500 from September 12, 2008 to August 23, 2016) and Brazil (daily closing prices 

of Ibovespa from December 1, 2007 to January 04, 2016). 

 

Table  1: Dataset description 

 

Dataset Source Period  Training   

Size 
Testing 
Size 

 Total 

Size 

S&P500   Yahoo! 

Finance  
 2008-09-12 to 

2016-08-23  
 1400   600   2000  

Ibovespa  Yahoo! 

Finance  
 2007-12-22 to 

2016-01-04  
 1400   600   2000  

 

The summary statistics of the two series under study are presented in Table 2: 

Table  2: Descriptive statistics 

 

  S&P500  Ibovespa 

Statistics  Value Value 
Observations  2000   2000  
Mean  

0.00027  
 -0.0002  

Median  0.0007   0.0000  
Skewness  -0.3448   0.0825  
Kurtosis  

10.4765  
 6.5769  

Std.Dev.   0.0137   0.0183  
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Minimum  -0.0947   -0.1210  
Maximum  0.1096   0.1368  

 

The Log likelihood (LL), AIC and BIC values for the GARCH(1,1) and 

GJR(1,1) are shown in Table 3 and 4. GJR with skewed Student’s t innovation is the best 

fit to both series. 

 

Table  3:  Goodness of fit for S&P500 returns 

 

Model  LL   AIC   BIC  
GARCH-Skewed-t   2891   -5.4224   -5.3999  
GJR-Skewed-t   2895   -5.7987   -5.7642  
 

Table  4: Goodness of fit for Ibovespa returns 

 

Model  LL   AIC   BIC  
GARCH-Skewed-t   2891   -5.4224   -5.3999  
GJR-Skewed-t   2895   -5.7987   -5.7642  
 

We select the parameters 𝐶 , 𝜀  and the kernel parameters via sensitivity 

analysis and holdout method. In order to save space, Table 5 only reports the optimal 

parameters of SVR for the Ibovespa series. 

Table  5: Sensitivity analysis of SVR 

 

Parameter  Range  OptimalValue Smallest MSE  

𝐶  [0,10]   

5.18400  
 

0.0002154  

𝜀  [0,0.1]   

0.05929  
 

0.0002146  

𝛾  [0,1]   

0.98010  
 

0.0002115  
 

Table 6 report the prediction performance for the S&P 500 and Ibovespa indices returns. 

 

Table  6: Forecasting performance 
 

Model  S&P 500  Ibovespa 
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  MSE   MSE  

RandomWalk  2.929977× 10−8  1.620612× 10−7 
SVR Gaussian kernel   2.541976× 10−8  1.221150× 10−7 
SVR Morletwavelet  2.599294× 10−8  1.225117× 10−7 
GARCH-Skewed-t  8.647090× 10−5  8.674276× 10−5 
GJR-Skewed-t   9.362243× 10−5  9.417864× 10−5 

 

For both series, the SVR presented the best prediction results. For S&P 500 

series, the SVR has a forecast performance 13% higher than the random walk (RW). For 

the Ibovespa series, the SVR has a forecast performance 25% higher than the RW. Thus, 

predictive accuracy is higher in emerging market compared to established financial 

market, which confirms the findings of Hsu et al. [19]. 

Besides, to compare the predictive power of two models and investigate the 

statistical significance of the success of our point forecasts, Sermpinis et al. [26], we use 

the two-sided Diebold-Mariano test (DM) [12] given by the following structure [10]: 

 

 𝐻0:
1

600
|ℎ̃𝑡 − ℎ̂1,𝑡| − |ℎ̃𝑡 − ℎ̂0,𝑡| = 0 

 

 𝐻1:
1

600
|ℎ̃𝑡 − ℎ̂1,𝑡| − |ℎ̃𝑡 − ℎ̂0,𝑡| ≠ 0 

 

where ℎ̃𝑡 is the volatility proxy, ℎ̂0,𝑡 is the volatility estimated by the random walk 

model and ℎ̂1,𝑡 is the volatility estimated by a given model. The DM test statistic for the 

difference of MSE loss function is given by Chen et al. [10]: 

 𝐷𝑀 =
1

√600

1

√�̂�2
∑2000

𝑡=1400 |ℎ̃𝑡 − ℎ̂1,𝑡| − |ℎ̃𝑡 − ℎ̂0,𝑡|~𝑁(0,1) (19) 

 

where √�̂�2 is the covariance matrix. Positive values indicate that the random walk has 

lower predictive ability than other models. 

Table 7 and Table 8 report the DM statistics and p-values of the DM test for the 

difference of MSE loss function for the S&P500 and Ibovespa daily returns, 

respectively: 

 

Table  7:  Diebold-Mariano test (Benchmark: Random walk model,  

            one-step-ahead) for S&P500 

 

Model  DM Statistics   p-value 



 
 
 
 
 
 
Volatility Forecasting: The Support Vector Regression Can Beat the Random Walk 

_____________________________________________________________________  

 

123 

 

DOI: 10.24818/18423264/53.4.19.07 

 

 

SVR-Gaussian  5.8767   6.951× 10−9 
SVR-Morlet  7.0304   5.633× 10−12 
GARCH-Skewed-t   -27.156   2.2× 10−16 
GJR-Skewed-t   -27.13   2.2× 10−16 
 

 

 

Table  8:  Diebold-Mariano test (Benchmark: Random walk model,  

            one-step-ahead ) for Ibovespa 

 

Model  DM Statistics   p-value 
SVR-Gaussian  11.539   2.2× 10−16 
SVR-Morlet  10.161   2.2× 10−16 
GARCH-Skewed-t   -51.669   2.2× 10−16 
GJR-Skewed-t   -43.635   2.2× 10−16 

 

For the S&P500 and Ibovespa index data, the SVR models outperform random 

walk, GARCH and GJR models on the skewed Student’s t-distribution at any usual 

confidence level. We reject the null hypothesis of equal forecast accuracy between the 

mean squared error (MSE) of a random walk to the MSE generated by the point 

forecasts for all models and series. To best of our knowledge, this is the first study to 

compare and show that the SVR can beat the random walk in the context of volatility 

forecasting. Besides, the results of this research show that the SVR algorithm can be 

exploited with different kernels to improve predictions of volatility. 

 

5  Concluding Remarks 

 
In this paper, we propose a Support Vector Regression (SVR) to forecast daily 

stock market volatility in United States and Brazil. To evaluate the difference between 

our point-forecasts and random-walk forecasts, we use the Diebold-Mariano test. The 

contribution of this paper are twofold. First, we show that the SVR with Gaussian and 

Morlet wavelet kernel can beat the random walk model in one-period-ahead volatility 

forecasting. Second, we show that these models outperform the traditional GARCH and 

GJR with a skewed Student’s t-distribution, which confirms other empirical findings. 

Despite the limitations of this study, we believe that the results of this work may boost 

the development of other models that will further improve the predictions of the SVR 

model in the context of volatility forecasting. 
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